ののでは

miR-214 通过靶向调控 E2F3 抑制肝癌细胞的增殖

杜朝阳,杨如玉,李 超,段丽娟

(河南省南阳市中心医院血液科,河南 473001)

【摘要】目的 探讨 miR-214 通过靶向调控 E2F 转录因子 3 (E2F3) 抑制肝癌细胞的增殖。方法 RT-PCR 法检测细胞株 SMMC-7721、HepG2、SK-Hep-1 和 Huh 7 中 miR-214 的表达量,并利用脂质体转染 miR-214 NC 及 miR-214 mimics。采用 MTT 法检测 miR-214 对肝癌细胞活力的影响; Hoechst 染色试剂盒检测 miR-214 对细胞凋亡的影响,流式细胞术检测 miR-214 对细胞周期的影响; Western blot 及 RT-PCR 法检测 miR-214 对肝癌细胞中 E2F3 蛋白及 mRNA 表达量的影响,并通过荧光素酶报告基因进行验证。结果 SMMC-7721、SK-Hep-1、Huh 7 及 HepG2 中 miR-214 的表达量分别为(0.83±0.08)、(0.32±0.03)、(0.33±0.03)、(0.08±0.01),其中 HepG2 中 miR-214 表达量最低,因此选用 HepG2 作为后续实验细胞株。HepG2 细胞转染 miR-214 NC 及 miR-214 mimics 组细胞活力 (0.35±0.03) 明显低于 miR-214 NC 组 (0.65±0.06) 明显高于 miR-214 NC 组 (0.14±0.01),miR-214 mimics 组细胞活力 (0.35±0.03) 明显低于 miR-214 NC 组 (0.69±0.06),miR-214 mimics 组细胞凋亡率(36.37±3.43)% 明显高于 miR-214 NC 组 (3.74±0.34)%,miR-214 mimics 组 G1 期明 (57.79±5.78) 显长于 miR-214 NC 组 (45.319±4.53), miR-214 mimics 组中 E2F3 蛋白 [(0.23±0.02)、(0.24±0.02)]及 mRNA 表达量明显低于 miR-214 NC 组 [(0.98±0.09)、(0.99±0.10)],差异均具有统计学意义(P<0.01)。结论 miR-214 过表达能通过下调 E2F3 表达抑制肝癌细胞的增殖。

【关键词】 miR-214, 肝癌细胞; E2F3; 增殖

【中图分类号】R-33 【文献标识码】A 【文章编号】1671-7856(2017) 06-0027-06 doi: 10.3969. j. issn. 1671 - 7856. 2017. 06.006

Inhibition of the proliferation of hepatocellular carcinoma cells by miR-214 via regulation of E2F3 expression

DU Zhao-yang, YANG Ru-yu, LI Chao, DUAN Li-juan (Department of Hematology, Nanyang Central Hospital, Nanyang, Henan Province 473001, China)

[Abstract] Objective To explore the effect of inhibition of miR-214 expression on the proliferation of hepatocellular carcinoma cells via regulation of E2F3 expression. Methods The expression of miR-214 in SMMC-7721, HepG2, SK-Hep-1 and Huh 7 cells was examined by RT-PCR. Hepatocellular carcinoma cells were transfected with miR-214 NC and miR-214 mimics with liposomes. The expression of miR-214 was detected by RT-PCR. The cell viability was detected by MTT assay. Cell apoptosis was detected by Hoechst staining. Cell cycle was detected by flow cytometry. Western blot, RT-PCR and dual luciferase reporter gene assay were used to detect whether E2F3 was a downstream target gene of miR-214. Results The expression of miR-214 in SMMC-7721, HepG2, SK-Hep-1 and Huh 7 cells was 0. 83 \pm 0. 08, 0. 32 \pm 0. 03, 0. 33 \pm 0. 03, and 0. 08 \pm 0. 01, respectively. The expression of miR-214 in the HepG2 cells was the

lowest, so HepG2 cells were selected as the subsequent experimental cell line. Compared with the miR-214 NC group, the expression of miR-214 (0.65 \pm 0.06 vs. 0.14 \pm 0.01) was up-regulated, the cell viability (0.35 \pm 0.03 vs. 0.69 \pm 0.06) was decreased, cell apoptosis rate [(36.37 \pm 3.43)% vs. (3.74 \pm 0.34)%] was increased, the G1 phase of the cell cycle (57.79 \pm 5.78 vs. 45.319 \pm 4.53) was prolonged, the expression of E2F3 protein (0.23 \pm 0.02 vs. 0.98 \pm 0.09) and mRNA (0.24 \pm 0.02 vs. 0.99 \pm 0.10) was significantly down-regulated in the miR-214 mimics group (P < 0.01). **Conclusion** miR-214 mimics suppress the HepG2 cell proliferation via targeted down-regulation of E2F3 expression.

[Key words] miR-214; Hepatocellular carcinoma; E2F3; Proliferation

原发性肝癌是肝细胞或肝内管细胞发生的恶性肿瘤,其中 90% 为肝细胞肝癌(hepatocellular carcinoma, HCC),是位居世界第五位及致死率第 3位的肿瘤^[1,2]。目前,手术切除和肝移植是 HCC 最为有效的治疗方法,然而,临床研究表明超过 50%的接受肝切除术的 HCC 患者出现术后复发^[1,2]。因此,探讨肝癌的发生发展的相关机制,对于肝癌的诊断,治疗及预后具有重要的意义。

MicroRNA (miRNA) 是一类非编码小分子 RNA,能够结合于靶基因 mRNA 的 3'-UTR 区域, 降解或者阻遏靶基因的翻译,从而抑制靶基因的 表达。近些年大量研究证实 miRNA 在肿瘤的发生 发展中起着重要的作用,包括肝癌[3]。miRNA微 阵列研究显示, miR-214 在肝癌组织中的表达明显 低于正常肝组织[4]。同时恢复肝癌细胞中 miR-214 的表达,能显著的抑制细胞的增殖,但具体的 作用机制未知。而 miRNA 对细胞生物学行为的调 控作用,大部分源于其对靶基因的调控作用[5,6]。 研究表明 E2F 家族基因 E2F 转录因子 3(E2F3) 在 肝癌组织中高表达,并与肝癌的发生发展密切相 关,且有研究显示 miR-214 与 E2F3 在多种病理情 况下的表达具有相关性[7,8],提示 miR-214 可能通 过调控 E2F3 调控细胞的生物学行为。所以本研 究将在此基础上,探讨 miR-214 在肝癌细胞株中 的表达,及恢复其表达后对细胞的增殖、凋亡行为 的影响及具体机制。

1 材料和方法

1.1 细胞株

人 SK-Hep-1 购于中国科学院细胞库。人 HepG2、SMCC-7721、Huh 7 购于美国菌种保藏中心 (ATCC)。

1.2 试剂及主要仪器

四唑盐试剂(MTT)(美国 Sigma 公司); 兔抗 E2F3、GAPDH 单克隆抗体(美国 Epitmics 公司); trizol 试剂盒(美国 Corning 公司);辣根过氧化物酶标记山羊抗兔 IgG(H+L),Hoechst 染色试剂盒,细胞周期检测试剂盒(碧云天生物技术研究所);胎牛血清,DMEM 培养基,胰蛋白酶(Gibco 公司);结晶紫(Sigma 公司)。CO₂ 培养箱,超净工作台(美国 Thermo Scientific 公司);TS100 倒置显微镜(日本 Nikon 公司);FACS Calibur 型流式细胞仪(美国 BD 公司);迷你双垂直电泳仪,迷你转印电泳仪,ChemiDocTM XRS 凝胶成像系统(美国 Bio-Rad 公司)。

1.3 miRNA 合成、配制、存储及转染

在广州市锐博生物科技有限公司订购合成 miR-214 mimic 及对照 mimic negative control (miR-214 NC)。合成样品先离心,然后每5 nmol miRNA 中加入250 μL DEPC 水稀释,配成20 μmol/L 母液, 分装,-20℃保存备用。转染前 1 d,在无双抗培养 基中接种细胞(6孔板,每孔加2000 µL,其他按比例 增加或减少),转染时细胞的汇合度要达到50%;用 适量无血清 Opti-MEM® I 培养基稀释 miRNA (250 μL),轻轻混匀。摇匀 Lipofectamine 2000,取适量用 Opti-MEM® I 稀释并轻轻混匀后室温孵育 5 min。 将稀释的 Lipofectamine 2000 和稀释的 miRNA 轻轻 混合, 室温孵育 (20~30) min; 将 miRNA/ Lipofectamine 2000 复合物加入 6 孔板,前后轻轻摇 动混合:6 h 以后换成含10% 血清的 DMEM 培养基, 于37℃, CO, 培养箱培养, 并用 RT-PCR 检测 miR-214 的表达。

1.4 MTT 检测细胞活力

将处于生长对数期的 HepG2 细胞消化,细胞浓度调整为 2×10^4 个/ mL,接种于 96 孔板,每孔 200 μ L,转染 48 h后,加入 20 μ L 终浓度为 5 mg/mL 的 MTT,继续培养 4 h后,加 150 μ L 二甲基亚砜,震荡 10 min,采用酶标仪于 570 nm 处测吸光度(A)值,每个实验组三个平行复孔。

1.5 Hoechst 染色检测细胞凋亡

将处于生长对数期的 HepG2 细胞接种于 6 孔

板,细胞浓度调整为1×10⁴ 个/ mL,接种于6孔板,每孔1 mL,转染48 h后,用不含EDTA的胰蛋白酶消化收集细胞,4%多聚甲醛固定15 min,PBS洗涤3次,加入Hoechst33258染色液避光染色15 min,PBS洗涤3次,在荧光显微镜下观察并拍照。每个实验组三个平行复孔。

1.6 流式细胞术检测细胞周期

将处于生长对数期的 HepG2 细胞接种于 6 孔板,细胞浓度调整为 1×10⁴ 个/ mL,接种于 6 孔板,每孔 1 mL,转染 48 h后,按细胞周期检测试剂盒说明书进行检测:用不含 EDTA 的胰蛋白酶消化细胞,离心,并重悬,接着加入 5 μL 终浓度为 10 mg/mL的 Rnase,37℃孵育 1 h,再加入 碘化丙啶染液,室温下避光染色 30 min,用流式细胞仪进行细胞周期检测分析。每个实验组三个平行复孔。

1.7 RT-PCR 验证 miR-214 在不同肝癌细胞株中的表达

参考 trizol 试剂盒使用说明书提取总 RNA,并用微量紫外分光光度计检测 RNA 的纯度,通过一步法 RT-PCR 试剂盒将逆转录 RNA,并进行 PCR 扩增,最后将扩增产物用于 2% 的琼脂糖胶电泳。引物分别加入 25 μL PCR 反应体系中,反应条件为94℃变性 45 s,59℃复性 45 s,72℃延伸 60 s,共 35个循环。 miR-214 上游引物:5′-GGACAGGACGCACAGTCA-3′,下游引物:5′-AGACAGGGCTCCGTGGT-3′,E2F3上游引物:5′-TGGACTTCGTAGTGCAGCTCT-3′,下游引物:5′-TGGACTCCTAGTGCAGCTCAGACA-3′,下游引物:5′-TGGACTCCACGACGTACT-3′。

1.8 Western blot 检测 E2F3 的表达

将处于生长对数期的 HepG2 细胞接种于 6 孔板,细胞浓度调整为 1×10^4 个/ mL,接种于 6 孔板,每孔 1 mL,转染 48 h后,刮下细胞,离心,后加入适量的 RIPA 裂解液,裂解 30 min,离心,小心吸取上清液,即可获得总蛋白。根据 BCA 试剂盒测定蛋白浓度。蛋白变性,上样,进行十二烷基苯磺酸钠凝胶电泳,后湿法转膜 30 min 左右。将膜浸入一抗溶液(兔抗 E2F3,GAPDH 单克隆抗体,稀释度 1:100)孵育,4℃过夜;次日二抗溶液(辣根过氧化物酶标记山羊抗兔 IgG(H+L))中室温孵育 $1 \sim 2$ h。将膜取出漂洗,在凝胶成像系统中曝光。用"Quantity one"软件统计分析各抗体条带灰度值。每个实验组

三个平行复孔。

1.9 荧光素酶报告基因表达分析

miR-214 及 E2F3 重组载体共转染到 HepG2 细胞中。分组如下: miR-214 mimics + Wt E2F3, miR-214 NC + Wt E2F3, miR-214 mimics + Mut E2F3, miR-214 NC + Mut E2F3。应用双荧光素酶检测系统检测转染好的荧光素酶活性,计算公式:相对荧光值 = 萤火虫荧光素酶荧光值/海肾荧光素酶荧光值。每个实验组三个平行复孔。

1.10 统计学方法

数据用 $\bar{x} \pm s$ 表示,采用 SPSS 17.0 软件进行统计,组间比较采用t 检验,以P < 0.05 为差异有统计学意义。

2 结果

2.1 四株肝癌细胞中 miR-214 的表达情况

如图 1, RT-PCR 结果显示, miR-214 在 SMMC-7721、SK-Hep-1、Huh 7 及 HepG2 细胞中的表达情况分别为 (0.83 ± 0.08) , (0.32 ± 0.03) , (0.33 ± 0.03) , (0.08 ± 0.01) , 其中 HepG2 中 miR-214 表达量最低, 因此选用 HepG2 作为后续实验细胞株。

2.2 miR-214 mimics 对 HepG2 肝癌细胞中 miR-214 表达量的影响

如图 2 所示,RT-PCR 结果显示,miR-214 NC 及 miR-214 mimics 在 HepG2 细胞中的表达量分别为 (0.14 ± 0.01) , (0.65 ± 0.06) ,二者比较,差异具有统计学意义(P<0.01)。

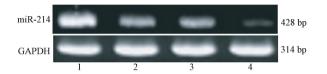
2.3 miR-214 mimics 对肝癌细胞活力的影响

HepG2 细胞转染 miR-214 NC 及 miR-214 mimics, 经 MTT 实验发现, 二者细胞活力分别为为 (0.69 ± 0.06) , (0.35 ± 0.03) , 二者比较, 差异具有统计学意义 (P<0.01)。

2.4 miR-214 mimics 对肝癌细胞凋亡情况的影响

如图 3 所示, HepG2 细胞转染 miR-214 NC 及 miR-214 mimics, 经 annexin V/PI 流式细胞术检测发现, 二者细胞凋亡率分别为 $(3.74 \pm 0.34)\%$, $(36.37 \pm 3.43)\%$, 二者比较, 差异具有统计学意义 (P < 0.01)。

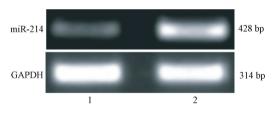
2.5 miR-214 对肝癌细胞周期的影响


如图 4 所示, HepG2 细胞转染 miR-214 NC 及 miR-214 mimics, 二者 G1 期细胞数目分别为 (45.319 ± 4.53) , (57.79 ± 5.78) , 二者比较, 差异 具有统计学意义 (P<0.01)。

2.6 miR-214 对 HepG2 肝癌细胞中 E2F3 表达量的影响

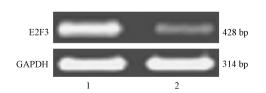
如图 5 所示, HepG2 细胞转染 miR-214 NC 及 miR-214 mimics, 二者细胞中 E2F3 的 mRNA 及蛋白表达量分别为(0.98 ± 0.09), (0.24 ± 0.02)及(0.99 ± 0.10), (0.23 ± 0.02), 二者比较, 差异具有统计学意义(P<0.01)。

2.7 荧光素酶报告基因表达分析


将 miR-214 mimics、miR-214 NC 及野生型载体 pMir E2F3 3'UTR-Wt、及突变型载体 pMir E2F3 3'UTR-Mut 转入 HepG2 细胞中,结果发现, miR-214 mimics 与野生型载体 pMir E2F3 3'UTR-Wt 共转染组的荧光信号强度明显弱于其它转染组,差异具有

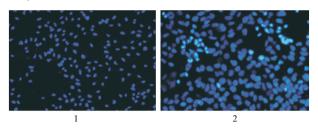
注:1:SMMC-7721;2:SK-Hep-1;3:Huh 7;4:HepG2

图1 四株肝癌细胞中 miR-214 的表达情况


Fig. 1 Expression of miR-214 in the four hepatocellular carcinoma cells

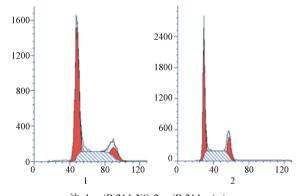
注:1:miR-214 NC:2:miR-214 mimics

图 2 miR-214 mimics 对 HepG2 肝癌 细胞中 miR-214 表达量的影响


Fig. 2 Effect of miR-214 mimics on expression of miR-214 in the HepG2 cells

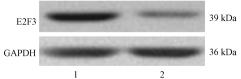
统计学意义(P < 0.01)。而对于突变型载体 pMir E2F3 3'UTR-Mut 来说,各组间荧光强度无任何差别(P > 0.05),说明 E2F3 是 miR-214 下游靶基因。见图 6。

3 讨论


原发性肝癌在恶性肿瘤发病中居世界前五,也是世界第三大致死性癌症^[1,2]。研究表明,在各种病理、生理过程,包括癌症过程中,许多 miRNAs 异常表达^[3]。miRNAs 作为一类新型的调节因子,既可以作为原癌基因发挥作用,也可以作为抑癌基因进而调节细胞的生物学特性^[3]。miR-214 是在小鼠,大鼠及鸡等种属中高度保守的非编码RNA分

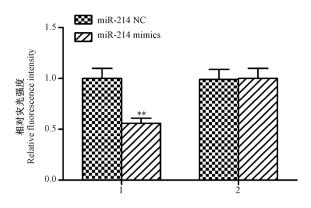
注:1:miR-214 NC;2:miR-214 mimics

图 3 miR-214 mimics 对 HepG2 肝癌 细胞凋亡情况的影响(×200)


Fig. 3 Effect of miR-214 mimics on cell apoptosis in the HepG2 cells

注:1:miR-214 NC;2:miR-214 mimics

图 4 miR-214 mimics 对 HepG2 肝癌细胞周期的影响


Fig. 4 Effect of miR-214 mimics on cell cycle in the HepG2 cells

注:1:miR-214 NC;2:miR-214 mimics

图 5 miR-214 mimics 对 HepG2 肝癌细胞中 E2F3 表达量的影响

Fig. 5 Effect of miR-214 mimics on expression of E2F3 in the HepG2 cells

1:pMir E2F3 3'UTR-Wt;2:pMir E2F3 3'UTR-Mut **图 6** 荧光素酶报告基因表达分析

Fig. 6 Luciferase reporter gene expression analysis 与 miR-214 NC 比较, **P < 0.01 Compared with the miR-214 NC, **P < 0.01

子,位于染色体 1q24.3。最初把 miRNAs 和癌症联 系在一起是在慢性淋巴细胞白血病的研究中,研究 发现在大多数的这类病人中 miR-15a 和 miR-214-1 的表达是下调或是缺失的^[9]。后续 miRNA 微阵列 进一步的证实肝癌组织中 miR-214 的表达低于癌旁 组织[4]。提示 miR-214 在肝癌组织中是作为抑癌基 因存在的,并参与肝癌的发生发展过程。因此本研 究在此基础上首先通过 RT-PCR 法检测 4 株肝癌细 胞株 SMMC-7721、SK-Hep-1、Huh 7 及 HepG2 中 miR-214 的表达,结果表明 miR-214 在 HepG2 的表 达量最低,因而选为后续实验细胞株。接着通过 RT-PCR 法证实了 miR-214 NC 及 miR-214 mimics 成功转染 HepG2 细胞。所以进一步采用 MTT 法, Hoecsht 染色法检测 miR-214 mimics 对 HepG2 细胞 活力及凋亡情况的影响,结果表明 miR-214 mimics 能显著的降低细胞活力,并提高细胞凋亡率,与 Xu 等[5]在骨肉瘤细胞,Yang 等[6]在胃癌细胞株的研究 结果一致,从而说明恢复 miR-214 的表达能显著的 抑制 HepG2 的增殖,并诱导细胞凋亡。而肿瘤细胞 的不可控制的生长增殖源于细胞周期的紊乱,其中 细胞周期一般分为 G1、G2/M 及 S 期,且 G1 期及 G2 期是多数抗癌药物作用肿瘤细胞的靶点[10]。 miR-214 能够通过调控细胞周期相关蛋白 Cyclin D1,CDK3及CDK6的表达,从而使细胞周期阻滞于 G1 期,最后使肝癌细胞 DNA 复制及有丝分裂阻断, 最终导致细胞增殖受阻[11,12]。所以本研究采用流 式细胞术检测 miR-214 mimics 对 HepG2 细胞周期 的影响,结果与上述报道一致[11,12],miR-214 mimics 能显著的延长 HepG2 细胞的 G1 期,使细胞周期阻 滞于 G1 期,最终导致细胞增殖阻断。

miRNAs 对肿瘤细胞生物学行为的影响,一般 是通过调控靶蛋白表达量来实现的,有报道证实 1/ 3 蛋白的转录表达是由 miRNAs 所调控的[13]。E2F 家族最初是在腺病毒 E2 基因的研究中发现的.后 面陆续发现了8个的E2F家族成员,这8个E2F家 族成员,由于结构上的差异,导致了功能上的不同。 其中 E2F3 属于激活的亚群,能够促使静息细胞快 速的从 G1 期进入 S 期,在细胞的增殖与凋亡过程 中发挥着重要的作用。同时研究已经显示 E2F3 在 肝癌组织中高表达,且通过下调 E2F3 表达,能促使 肝癌细胞周期阻滞在 G1 期^[8,14]。另外研究已经表 明 miR-214 与 E2F3 在多种病理过程中的表达量具 有相关性,且有研究也发现 E2F3 是 miR-214 的靶 基因[14,15]。所以本研究利用荧光素酶报告基因检 测 E2F3 是否是 miR-214 的靶基因,结果表明野生 型的 E2F3 活性被 miR-214 mimics 显著下调,提示 E2F3 是 miR-214 的靶基因,接着采用 western blot 检 测 miR-214 mimics 对 E2F3 蛋白及 mRNA 表达量的 影响,结果表明 miR-214 mimics 能显著的降低 E2F3 蛋白及 mRNA 的表达,进一步的证实了 E2F3 确实 是 miR-214 的靶基因。

综上所述,提高肝癌细胞 HepG2 中 miR-214 的表达,能显著的降低细胞活力,提高细胞凋亡率,并使细胞周期阻滞在 G1 期,同时能够靶向的下调 E2F3 表达。

参考文献:

- [1] de Lope C R, Tremosini S, Forner A, et al. Management of HCC[J]. J Hepatol, 2012,56 Suppl 1:S75 S87.
- [2] Finn R S. Advanced HCC; emerging molecular therapies [J].
 Minerva Gastroenterol Dietol, 2012,58(1):25 34.
- [3] Mizuguchi Y, Takizawa T, Yoshida H, et al. Dysregulated miRNA in progression of hepatocellular carcinoma; A systematic review[J]. Hepatol Res, 2016,46(5):391-406.
- [4] Peveling-Oberhag J, Seiz A, Doring C, et al. MicroRNA Profiling of Laser-Microdissected Hepatocellular Carcinoma Reveals an Oncogenic Phenotype of the Tumor Capsule [J]. Transl Oncol, 2014,7(6):672-680.
- [5] Xu Z, Wang T. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1 [J].
 Biochem Biophys Res Commun, 2014,449(2):190 – 195.
- [6] Yang T S, Yang X H, Wang X D, et al. MiR-214 regulate gastric cancer cell proliferation, migration and invasion by targeting PTEN[J]. Cancer Cell Int, 2013,13(1):68.
- [7] Katoh M. Cardio-miRNAs and onco-miRNAs: circulating

- miRNA-based diagnostics for non-cancerous and cancerous diseases[J]. Front Cell Dev Biol, 2014,2;61.
- [8] Zeng X, Yin F, Liu X, et al. Upregulation of E2F transcription factor 3 is associated with poor prognosis in hepatocellular carcinoma [J]. Oncol Rep., 2014,31(3):1139-1146.
- [9] Calin G A, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia[J]. Proc Natl Acad Sci U S A, 2008, 105 (13);5166-5171.
- [10] Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer[J]. Cell Prolif, 2003,36(3):131-149.
- [11] Wang P, Chen S, Fang H, et al. miR-214/199a/199a * cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators [J]. Oncotarget, 2016,7

- (1):929 945.
- [12] Zhang L L, Guo Y J, Zhao C N, et al. Effects and mechanism of miR-214 on hepatocellular carcinoma [J]. Asian Pac J Trop Med, 2015,8(5):392-398.
- [13] 刘浩, 尹华斌, 纪方. MicroRNA 与肿瘤的相关研究进展[J]. 现代生物医学进展, 2012,12(7):1388-1390.
- [14] Cao T, Li H, Hu Y, et al. miR-144 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting E2F3 [J]. Tumour Biol, 2014,35(11):10759 10764.
- [15] Yang Y, Chang S, Zhao Z, et al. MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3[J]. Oncol Lett, 2015,10(6):3779 –3784.

[修回日期]2016-10-26

(上接第11页)

- [8] Johnson RA. Voluntary running-wheel activity, arterial blood gases, and thermal antinociception in rats after 3 buprenorphine formulations [J]. J Am Assoc Lab Animal Sci, 2016, 55(3): 306-311.
- [9] 杨勇,郭曲练,邹望远,等. 鞘内注射氯胺酮对甲醛炎性疼痛大鼠脊髓背角蛋白激酶 C 表达的影响 [J]. 南方医科大学学报,2011,31(3):461-464.
- [10] 闫美灵, 李京波. PKC 在心血管疾病中的研究进展 [J]. 医学研究杂志, 2014, 43(9): 7-9.
- [11] Li SS, Zhang WS, Yang JL, et al. Involvement of protein kinase B/Akt in analgesic effect of dexmedetomidine on neuropathic pain [J]. Cns Neurosci Therap, 2013, 19(5): 364 – 366.
- [12] 王一涵,冷玉芳,李娟,等. 右美托咪啶对慢性神经病理性痛大鼠脊髓背角神经元凋亡的影响[J]. 中华麻醉学杂志,2012,32(3):353-357.

[修回日期]2016-11-23