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[ Abstract] Parkinson’s disease is the second most common neurodegenerative disease in middle-aged and elderly
people. It is characterized by a long disease course and complex treatment process, introducing great challenges to society.
Behavioral changes in animal models of Parkinson’ s disease can intuitively reflect the modeling situation of experimental
animals and the effects of drug interventions. Therefore, selecting standardized animal models and appropriate behavioral
assays is fundamental for both understanding the mechanisms of Parkinson’ s disease and developing anti-Parkinson drugs.
In this paper, we summarize the method of behavioral experiments of Parkinson’s disease using mice and rats at home and
abroad and systematically summarize the experimental equipment, experimental method, evaluation indexes, and precautions

of commonly used Parkinson’s behavioral experiments. We also provide an overview of the commonly used animal models of
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Parkinson’ s disease and analyze their modeling mechanisms, alignment with the clinical features of Parkinson’ s disease, and

respective advantages and disadvantages. This analysis will help researchers in choosing appropriate animal models of

Parkinson’ s disease and behavioral testing method according to the purpose of the study.

[ Keywords] Parkinson’s disease; rat and mouse; behavioral experiment; animal model
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Table 1 Scoring criteria for mouse pole test
/s Mouse climbing time/s / Score/points
s <4.00 s 0
Mouse successfully climbed down from the pole for the first time, climbing time < 4.00 s
s 4.01 ~ 8.00s
Mouse can climb down after several pauses, climbing time is 4.01 ~ 8.00 s

, 8.01 ~ 12.00 s
Mouse crawled slowly with slight tremor, climbing time is 8.01 ~ 12.00 s

5

s > 12.00 s

Mouse fell, frequently trembled, their limbs were stiff, or the climbing time > 12. 00 s 3
1.2.4 ° 3,
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N , ,
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PD o Table 2 Scoring criteria for mouse wire hanging test
1.3.1 /s /
Suspension to drop time/s Score/points
2 100 cm 0-4 0
1.5 mm 5.9 |
50 em, 10 ~ 14 2
5 15~ 19 3
1.3.2 20 ~ 24 4
25 ~ 29 5
’ = 30 6
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3
Table 3 Scoring criteria for balance beam test
/
Performance Score/ points
Stabilize the balance posture and pass the balance beam smoothly 0
Grasp the edge of the balance beam and pass through the balance beam :
Hold the balance beam tightly, and one limb hangs from the balance beam and passes through the balance beam 2
60 s 3
Both limbs fall from the balance beam or rotate on the balance beam for more than 60 s without falling
40 s 4
Trying to balance on the balance beam for more than 40 s but falling down
20 s 5
Trying to balance on the balance beam for more than 20 s but falling down
. . 6
Fall without trying to balance on the balance beam
. PD : 30 min s ,
7l21,25) . . MPTP
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Table 4 Parkinson’s disease animal models
Modelin, Modelin, Motion Pathological .
Types Models & e . & Advantages Disadvantages
methods mechanism characteristics features
s
N H
I , . MPTP
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; N s ;3 a-synuclein
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?* Intraperitoneal itochondrial Tremors, neurons dministrati L .
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& and block the s symptoms ~ and  method of MPTP
1 week . R of limbs decreased; TH . .
mitochondrial rent pathological have great influence
conten
electron features are more  on the
. decreased; «- | . . . L
transfer chain lei in  line with modeling situation
synuclein ..
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A ; TH
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H 3 ,
6 pg , ’ , ,
5 . .
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6-OHDA Stereoscopic P & It has strong
_ o . neurons .
[52-54] injection of  Competitive . specificity ~ for  Motor symptoms are
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(52-54] . gt . rotation died; Dopamine P 8 .. .
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tract and oxidative stress obvious injection of brain
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Modelin Modeling Motion Pathological .
Types Models g .2 - g Advantages Disadvantages
methods mechanism characteristics features
; TH
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1 5
5 ’
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Types Models Modeling Modeh.ng MOUOTI . Pa?h(ﬂug]cal Advantages Disadvantages
methods mechanism characteristics features
DJ-1
Detail ~ damage
DJ-1 Dopaminergic DJ-1 is more Although the content
DJ-ILM’46J DJ-1 Oxidative stress Motion defect neurons sensitive to of DA in mouse
gene knockout response o damaged neurotoxin after model  decreased,
dysfunction obviously; knockout, which  the DA neurons in
Dopamine is more substantia nigra
content conducive to compacta were
decreased joint modeling not lost
5
Table 5 Model detection index
NA
Animal Histonathol Biochemical Western Immunohisto-  Immunofluo- mI];{NA ind
models 1stopathiology indicator Blot chemical rescence m faex
, IL-1g T TNF-
. o1 NLRP3 T ASC T, |
, ; PKA C-a | ; ’
s Caspase-
115
’ N IL-1 TNF- ’
T IL-18 1 a : GPX4 | | b 11,
Number of striatal cells A ! SOD | MDA FTHI | ; ’ mRNA | ;
MPTP decreased , the t GSH-Px | ; A Wnt Wnt5a
[63-64] arrangement was loose, e IFN’ | | .B-catenin | Ibal 1 mRNA |
MPTP nuclear condensation and Infl oy yt 116 1 Inflammation related 1L-1B 11 T N TH
nflammator; r IL- rosin
[63-64] vacuolar degeneration ammalory 1acko ’ T, INF-a T, NLRP3 T,  Tyrosine yrosine mRNA | ;
model - © . TNF-a 1, IL-18 T ; hydroxylase .
increased , neurons . . ASC T ,PKA C-a | ; hydroxylase Dopamine
. Oxidative stress index SOD . . L
degenerated and died, and Apoptosis pathway protein | ; transporter
|, MDA T, GSH-Px | ; . T Capsase-
the number decreased I factor TFN—y | Caspase-1 1 ; Capsase- 11 mRNA |
obviously; Nissl bodies fmmune factor Y Ferroptosis marker GPX4 171 ; M, lial
decreased , cytoplasm |, FTH1 | ; 1;10§ 1@
activation
staining became shallow, Wnt non-classical K
and the nucleus approach Wnt5a |, B- Earl ?
contracted , ruptured catenin | a
and dissolved
IL-18 T, TNF-
al IL-671 IL-10] ;
N p-IkBa T | NF-
’ kB p65 1 ;
’ TNF-a T [ IL-1B
’ ’ TIL-61; TRPV4 T, PERK 1.
6-OHDA ’ H D HOP
[65-66] Brain tissue cells are GSH | S0 CHOP 1
disordered and  swollen | MDA 1 Inflammatory factor I1L-18 _ _
6-OHDA " 1 moture oceurs, flammatory  factor - TNF-a - T, TNF-ot T, IL6 T,
[65-66] and cell rupture occurs; o1 .61 110 | .
model Number of neurons f T BT . I b
d q 1 Oxidative stress index GSH  Inflammatory pathway p-
ecreased , nucleus
contracted, nucleoli was L, soD |, MDAT LcBor T, NF-kB p65 T ;

blurred,
vacuolation appeared

Apoptosis and endoplasmic
reticulum  stress
TRPV4 1,
CHOP 1

protein

PERK 1,
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5
Animal Histopathology Biochemical Western Immunohisto-  Immunofluo- ;HES: index
model ) ’ indicator Blot chemical rescence
. s TLR4 T,
DA MyD88 1 . NF-«B p65 T . & :
, IL-37 \TNF-a T;  p-NF-«kB p65 T .PI3K T | ;
, 5-HT | ; mTOR | ;
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L67—6;3J brain tissue cells, and the TNF-a T ; TLR4 T, MyD88 T, NF- hydroxylase o Caspase-3
model cells are arranged in  Neurotransmitter 5-HT | ; kB p65 T, p-NF-kB p65 | - mRNA 1
disorder; Number of DA  Oxidative stress index CAT T, PI3K T, mTOR | ; Ml?rog'hal
neurons  is  obviously |, AOPP T Apoptosis pathway p53 T, actnl/(atlon
reduced , and the Bax T, Caspase-3 T, Bel- marker
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cell body shrinks
iNOS 1 | IL-1B
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. T .CAT ] .GPx | ; ’ ;
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Paraquat  swell and rupture, nucleoli 101 ) BT, L 1 IL-1gT, HMGBL T hydroxylase ~ mRNA T
model () shrink ; NLTuron cc?ﬂs are e stress index SOD Inflammatory pathway l.; .
reduced in  shrinkage, | MDA 1 CAT | PI3K T, PDK-1 T, p- Microglial
disordered in arrangement CP,x L ’ > AKT T activation
R o R . Neurotransmitter TGF-B marker
Mitochondrial function index
ATP | l', GDNF'i ; . Ibal T
Mitochondrial fusion/
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Drpl 1

MPTP , Lewy-bodies
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